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ABSTRACT—Stephanie C. Herring, Nikolaos Christidi, Andrew Hoell, James P. Kossin, Carl J. Schreck III, and Peter A. Stott

This sixth edition of explaining extreme events of the 
previous year (2016) from a climate perspective is the 
first of these reports to find that some extreme events 
were not possible in a preindustrial climate. The events 
were the 2016 record global heat, the heat across Asia, 
as well as a marine heat wave off the coast of Alaska. 
While these results are novel, they were not unexpected. 
Climate attribution scientists have been predicting that 
eventually the influence of human-caused climate change 
would become sufficiently strong as to push events 
beyond the bounds of natural variability alone. It was also 
predicted that we would first observe this phenomenon 
for heat events where the climate change influence is most 
pronounced. Additional retrospective analysis will reveal 
if, in fact, these are the first events of their kind or were 
simply some of the first to be discovered.

Last year, the editors emphasized the need for ad-
ditional papers in the area of “impacts attribution” that 
investigate whether climate change’s influence on the 
extreme event can subsequently be directly tied to a 
change in risk of the socio-economic or environmental 
impacts. Several papers in this year’s report address this 
challenge, including Great Barrier Reef bleaching, living 
marine resources in the Pacific, and ecosystem productiv-
ity on the Iberian Peninsula. This is an increase over the 
number of impact attribution papers than in the past, and 
are hopefully a sign that research in this area will continue 
to expand in the future.

Other extreme weather event types in this year’s 
edition include ocean heat waves, forest fires, snow 
storms, and frost, as well as heavy precipitation, drought, 
and extreme heat and cold events over land. There were 

a number of marine heat waves examined in this year’s 
report, and all but one found a role for climate change 
in increasing the severity of the events. While human-
caused climate change caused China’s cold winter to be 
less likely, it did not influence U.S. storm Jonas which hit 
the mid-Atlantic in winter 2016.

As in past years, the papers submitted to this report 
are selected prior to knowing the f inal results of 
whether human-caused climate change influenced the 
event. The editors have and will continue to support the 
publication of papers that find no role for human-caused 
climate change because of their scientific value in both 
assessing attribution methodologies and in enhancing 
our understanding of how climate change is, and is not, 
impacting extremes. In this report, twenty-one of the 
twenty-seven papers in this edition identified climate 
change as a significant driver of an event, while six did 
not. Of the 131 papers now examined in this report over 
the last six years, approximately 65% have identified a 
role for climate change, while about 35% have not found 
an appreciable effect.  

Looking ahead, we hope to continue to see improve-
ments in how we assess the influence of human-induced 
climate change on extremes and the continued inclusion 
of stakeholder needs to inform the growth of the field and 
how the results can be applied in decision making. While 
it represents a considerable challenge to provide robust 
results that are clearly communicated for stakeholders 
to use as part of their decision-making processes, these 
annual reports are increasingly showing their potential 
to help meet such growing needs.
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7. CMIP5 MODEL-BASED ASSESSMENT OF ANTHROPOGENIC 
INFLUENCE ON HIGHLY ANOMALOUS ARCTIC WARMTH 

DURING NOVEMBER–DECEMBER 2016

Jonghun Kam, Thomas R. KnuTson, FanRong Zeng, and andRew T. wiTTenbeRg

According to CMIP5 simulations, the highly anomalous Arctic warmth during November–December 2016, 
as estimated in five observed datasets, most likely would not have been possible 

without anthropogenic forcing.

Introduction. Arctic surface temperatures during 
November–December 2016 were anomalously warm 
(Fig. 7.1a). An Arctic area-averaged temperature 
index (Fig. 7.1b and Fig. ES7.2) set a new high record 
in the GISS Surface Temperature Analysis data 
(Hansen et al. 2010), and was either a record high or 
anomalously high—compared to early 20th century 
levels—according to four other observational prod-
ucts (online supplement material; Fig. ES7.2; Table 
ES7.2). Arctic sea ice extent was at record low levels 
(for the season) during November and December 2016 
according to the National Snow and Ice Data Center 
(NSIDC) website (http://nsidc.org/arcticseaicenews 
/charctic-interactive-sea-ice-graph/). Arctic sea ice 
loss has been important for recent Arctic surface 
temperature amplification (Screen and Simmonds 
2010; Kirchmeier-Young et al. 2016).

Here we compare observed Arctic temperature 
anomalies for 2016 from multiple datasets to CMIP5 
model simulations (Taylor et al. 2012) to investigate 
whether such extreme seasonal warmth would have 
been likely to occur without anthropogenic forcing. 
Table ES7.1 lists the 18 CMIP5 models, their run 
lengths, and ensemble sizes for unforced Control 
simulations (CMIP5-CONT), Natural Forcing-Only 
historical simulations (CMIP5-NAT), and All Forc-
ing (natural + anthropogenic) historical simulations 
(CMIP5-ALL). 

Data and methods. We assess observed high-latitude 
warm anomalies for November–December 2016 
by defining an observed Arctic temperature index 
(zonal average over 64°–84°N; Fig. 7.1b; Fig. ES7.2). 
The index is assumed non-missing for a given year 
if at least 33% of area has coverage, where coverage 
at a grid cell requires at least one of the two months 
to be available. Model data were masked with the 
GISTEMP observed data availability mask. The 
GISTEMP dataset uses 1200-km spatial smoothing, 
resulting in more spatial coverage in the data-sparse 
Arctic regions, at the expense of relying on the spatial 
smoothing to fill data gaps. The small region north 
of 84°N (5.4% of total Arctic area) is not included due 
to the large fraction of unavailable estimates over the 
region, especially prior to 1950, even in the smoothed 
GISTEMP analysis (see Fig. ES7.1). We also analyzed 
the HadCRUT4 (Morice et al. 2012), NOAA (Vose 
et al. 2012), Berkeley Earth Land+Ocean (Rohde et 
al. 2014), and Cowtan & Way version 2.0 (Cowtan 
and Way 2014) datasets to assess uncertainties in the 
Arctic temperature index derived from the GISTEMP 
data (online supplement material). 

From the CMIP5 models, we use surface air 
temperature over land points, and either sea surface 
temperature or ice surface temperature over ocean 
points, depending on the simulated sea-ice coverage. 
The GISTEMP data uses air temperature over land 
and near-surface water temperature over oceans, with 
their extrapolation of temperatures being especially 
prominent over large sea ice regions. 

We estimate the fraction of attributable risk 
(FAR; Stott et al. 2004) for the observed anomalies 
(FAR = 1 – Pnat/Pall), following the procedures used 
in our previous regional temperature extremes as-
sessments (e.g., Kam et al. 2016). The FAR analysis 
begins by assessing the probability of exceeding 
the second-ranked extreme November–December 

AFFILIATIONS: Kam—Department of Civil, Construction, and 
Environmental Engineering, University of Alabama, Tuscaloosa, 
Alabama, and Cooperative Institute for Climate Science, 
Princeton University, Princeton, New Jersey; KnuTson, Zeng, and 
wiTTenbeRg—NOAA/Geophysical Fluid Dynamics Laboratory, 
Princeton, New Jersey

DOI:10/1175/BAMS-D-17-0115.1

A supplement to this article is available online (10.1175 
/BAMS-D-17-0115.2)
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warmth in the Arctic, for both present-
day and preindustrial conditions, using 
1881–1920 as our reference period. Here, 
we use the second-ranked year value 
as our main threshold value since, for 
GISTEMP, 2016 was the single year that 
exceeded the second-ranked extreme, 
and so in determining the probability of a 
year like 2016, we explore the probability 
of anomaly exceeding the previous record. 
We used the first-ranked extreme value as 
an alternative threshold, as a sensitivity 
test. The first- and second-ranked extreme 
values and years for the five observational 
datasets are presented in Table ES7.2.

For the present-day climate, we es-
timate the probability of exceeding the 
second-ranked threshold values, as of 
the year 2016, in the CMIP5 All-Forcing 
simulations. A multimodel probability 
distribution for the All-Forcing (Natural-
Forcing) runs is constructed by adding 
the grand ensemble mean (multimodel 
mean of the ensemble means from the in-
dividual CMIP5 models) to the aggregate 
distribution of annual anomalies from the 
CMIP5 control runs. For each individual 
model, the All-Forcing (Natural-Forcing) 
distribution consists of the All-Forced 
(Natural-Forced) ensemble mean for 2016, 
combined with the distribution of annual 
anomalies from that model’s control run. 

For the preindustrial case, we estimate 
the probability of exceeding the threshold 
value in the CMIP5 Natural Forcing-
Only simulations, extrapolated to 2016. 
The extrapolated value was based on the 
ensemble-mean time-mean value from 
2001 to the last year of each simulation 
of the 18 CMIP5 models (2005 or 2012, 
depending on the model). The probability 
distributions are computed for each of the 
eight individual climate models with at 
least three NAT runs and three All-Forcing 
runs. All-Forcing runs were extended 
from 2006 through 2016 using the RCP8.5 
scenario. For the multimodel mean, we 
used the grand ensemble mean from all 
18 climate models that provided Natural 
Forcing-Only runs (including those with 
a single CMIP5-NAT forcing run). 

Fig. 7.1. Arctic Nov–Dec 2016 surface temperature anomalies 
(°C, relative to 1881–1920): (a) GISTEMP observed anomalies; 
(b) Arctic index (64°–84°N) 10-yr running mean Nov–Dec values. 
Black curves: observed GISTEMP; red (blue): average of ensemble-
means of CMIP5 All-Forcing (Natural-Forcing) anomalies from 18 
models, respectively. Green curve: global annual-mean tempera-
ture anomalies using the y-axis labels along right edge. (c) Sliding 
trends (°C century−1) as a function of start years varying from 
1880 to 1997. All trends are for data segments ending in 2016 for 
GISTEMP observations (black curve) or CMIP5 All-Forcing (red 
curve, with 5th–95th percentile shown by pink shading). Trends 
end in 2012 for the Natural Forcing-Only data (blue curve and 
shading). See further details of methods in Fig. ES7.3. 
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Lastly, we estimate the observed internal variabil-
ity by subtracting the grand ensemble mean of the 
CMIP5–ALL runs from the observations, to attempt 
to remove the forced variability component. We then 
filtered the observed residuals using a low-pass filter 
with a half-power point at nine years, and computed 
their standard deviation. We also computed the stan-
dard deviations of each the eight CMIP5 models’ 
low-passed filtered control run series.

Results. The 10-year moving average of the Arctic 
November–December temperature index (Fig. 7.1b) 
shows very strong warming during the early 20th 
century prior to about 1930. A second major warm-
ing period began around 1990, culminating in the 
2016 value (Fig. ES7.2) which was the warmest ever 
recorded in the GISTEMP and Berkeley datasets. 
In Fig. 7.1b, global-mean annual-mean temperature 
anomalies are compared with the November–De-
cember Arctic temperature index, indicating that 
in the GISTEMP dataset, Arctic warming over the 
last century has been almost three times that of ob-
served global mean temperature. Compared to global 
temperature, the Arctic November–December index 
also has much more pronounced multidecadal vari-
ability. Despite this large multidecadal variability, 
the observed Arctic warming trend is highly unusual 
compared to the trends caused by natural variability, 
according to the average distribution of trends from 
CMIP5-NAT runs (Fig. 7.1c). This is the case for vari-
ous trend periods ending in 2012—at least for all trend 
start years prior to about 1990. The century-scale 
warming trend and strong multidecadal variability 
are common features of Arctic temperature indices 
from a number of observed datasets in addition to 
GISTEMP (e.g., Fig. ES7.2), including an analysis us-
ing only meteorological stations over the region north 
of 60°N (Bekryaev et al. 2010).

While the century-scale Arctic warming observed 
since the late 1800s resembles that in the CMIP5 All-
Forcing ensemble mean (Fig. 7.1b), the latter does 
not show the strong warm phase during 1920–40, 
suggesting that this observed warming may contain 
a large contribution from internal climate variability 
[e.g., the Atlantic multidecadal oscillation (Johan-
nessen et al. 2015)] in addition to a contribution of 
anthropogenic forcing (Najafi et al. 2015; Fyfe et al. 
2013). The sliding trend analysis (Fig. 7.1c) indicates 
that observed trends to 2016 beginning from the first 
half of the 20th century are typically inconsistent 
(significantly too low), compared to the CMIP5 All-
Forcing ensemble. This inconsistency between the 

observations and the CMIP5 All-Forcing ensemble 
could be due to a number of factors including: 1) 
mis-specified or missing climate forcing agents in the 
models; 2) errors in the model responses to the climate 
forcings; 3) underestimation of Arctic internal climate 
variability in the models; or 4) data issues, including 
problems with comparing modeled and observed 
Arctic data as discussed above.

We estimate the FAR for the multimodel ensemble 
for the first- and second-ranked year threshold val-
ues. The FAR ranges from 0.96 to 0.99 across the five 
observational datasets (Fig. 7.2a). A FAR of 1.0 for 
a particular set of forcings would indicate that that 
particular forcing set (e.g., anthropogenic forcing) 
alone is responsible for the entire risk of exceeding 
the given threshold. We also explore uncertainties 
in the FAR estimates, by computing the FAR for the 
second-ranked year threshold value for each individ-
ual CMIP5 model. The spread in these FAR estimates 
indicates the influence of observational uncertainties 
as well as uncertainties across the models. The low-
est FAR estimate (0.82) is from a combination of the 
second-ranked year value from NOAA observations 
and the CSIRO-Mk3-6-0 model (Fig. 7.2a), and re-
flects that model having the weakest 2016 All-Forcing 
response among the eight models, along with the 
second-highest 2016 Natural Forcing-Only response. 
Most of the individual model FAR estimates in Fig. 
7.2a are above 0.9, however.

We evaluate the modeled vs. estimated observed 
internal decadal variability of Arctic November–De-
cember temperatures in Fig. 7.2b. The GFDL-CM3 
model’s (M4) standard deviation (0.78°C) exceeds the 
observed estimated range of 0.62°C (Berkeley Earth) 
to 0.77°C (HadCRUT4). The remaining model con-
trol runs have weaker simulated decadal variability 
than observed, ranging from 0.45° to 0.58°C. Due to 
the relatively short observational record, and uncer-
tainties in the forced response mean, the estimate 
of real-world decadal internal variability remains 
uncertain (e.g., Knutson et al. 2016), and will require 
further evaluation in the future, for example with pa-
leoclimate data (e.g., Delworth and Mann 2000). The 
strong intrinsic variability of GFDL-CM3 contributes 
to its having the second-lowest FAR estimate (for 
the second-ranked threshold value) among the eight 
climate models (Fig. 7.2a). Further study is needed 
to assess the causes of possible under/over-estimates 
of internal decadal Arctic variability, and to address 
other caveats and uncertainties identified above. 
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Table 1.1. SUMMARY of RESULTS
ANTHROPOGENIC INFLUENCE ON EVENT METHOD USED

Total 
Events

INCREASE DECREASE NOT FOUND OR UNCERTAIN

Heat

Ch. 3: Global

Ch. 7: Arctic

Ch. 15: France

Ch. 19: Asia 

 Heat

Ch. 3: CMIP5 multimodel coupled model assessment with piCont, historicalNat, and historical forcings

Ch. 7: CMIP5 multimodel coupled model assessment with piCont, historicalNat, and historical forcings

Ch. 15: Flow analogues conditional on circulation types

Ch. 19: MIROC-AGCM atmosphere only model conditioned on SST patterns

Cold
Ch. 23: China

Ch. 24: China
Cold

Ch. 23: HadGEM3-A (GA6) atmosphere only model conditioned on SST and SIC for 2016 and data fitted to  
GEV distribution

Ch. 24: CMIP5 multimodel coupled model assessment

Heat & 
Dryness Ch. 25: Thailand Heat & Dryness Ch. 25: HadGEM3-A N216 Atmosphere only model conditioned on SST patterns

Marine Heat

Ch. 4: Central Equatorial Pacific

Ch. 5: Central Equatorial Pacific

Ch. 6: Pacific Northwest

Ch. 8: North Pacific Ocean/Alaska

Ch. 9: North Pacific Ocean/Alaska

Ch. 9: Australia

Ch. 4: Eastern Equatorial Pacific Marine Heat

Ch. 4: SST observations; SGS and GEV distributions; modeling with LIM and CGCMs (NCAR CESM-LE and 
GFDL FLOR-FA) 

Ch. 5: Observational extrapolation (OISST, HadISST, ERSST v4)

Ch. 6: Observational extrapolation; CMIP5 multimodel coupled model assessment

Ch. 8: Observational extrapolation; CMIP5 multimodel coupled model assessment

Ch. 9: Observational extrapolation; CMIP5 multimodel coupled model assessment

Heavy 
Precipitation

Ch. 20: South China

Ch. 21: China (Wuhan)

Ch. 22: China (Yangtze River)

Ch. 10:  California (failed rains)

Ch. 26: Australia

Ch. 27: Australia

Heavy 
Precipitation

Ch. 10: CAM5 AMIP atmosphere only model conditioned on SST patterns and CESM1 CMIP single coupled  
model assessment

Ch. 20: Observational extrapolation; CMIP5 and CESM multimodel coupled model assessment; auto-regres-
sive models

Ch. 21: Observational extrapolation; HadGEM3-A atmosphere only model conditioned on SST patterns; 
CMIP5 multimodel coupled model assessment with ROF

Ch. 22: Observational extrapolation, CMIP5 multimodel coupled model assessment 

Ch. 26: BoM seasonal forecast attribution system and seasonal forecasts

Ch. 27: CMIP5 multimodel coupled model assessment

Frost Ch. 29: Australia Frost Ch. 29: weather@home multimodel atmosphere only models conditioned on SST patterns; BoM seasonal 
forecast attribution system

Winter Storm Ch. 11: Mid-Atlantic U.S. Storm "Jonas" Winter Storm Ch. 11: ECHAM5 atmosphere only model conditioned on SST patterns

Drought
Ch. 17: Southern Africa

Ch. 18: Southern Africa
Ch. 13: Brazil Drought

Ch. 13: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on  
SST patterns; HadGEM3-A and CMIP5 multimodel coupled model assessent; hydrological modeling 

Ch. 17: Observational extrapolation; CMIP5 multimodel coupled model assessment; VIC land surface  
hdyrological model, optimal fingerprint method 

Ch. 18: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SSTs, CMIP5 multimodel coupled model assessment

Atmospheric 
Circulation Ch. 15: Europe

Atmospheric

Circulation
Ch. 15: Flow analogues distances analysis conditioned on circulation types

Stagnant Air Ch. 14: Western Europe Stagnant Air Ch. 14: Observational extrapolation; Multimodel atmosphere only models conditioned on SST patterns 
including: HadGEM3-A model; EURO-CORDEX ensemble; EC-EARTH+RACMO ensemble

Wildfires Ch. 12: Canada & Australia (Vapor  
Pressure Deficits)

Wildfires Ch. 12: HadAM3 atmospere only model conditioned on SSTs and SIC for 2015/16

Coral 

Bleaching

Ch. 5:  Central Equatorial Pacific

Ch. 28: Great Barrier Reef
Coral  

Bleaching

Ch. 5: Observations from NOAA Pacific Reef Assessment and Monitoring Program surveys

Ch. 28: CMIP5 multimodel coupled model assessment; Observations of climatic and environmental conditions 
(NASA GES DISC, HadCRUT4, NOAA OISSTV2)

Ecosystem 
Function

Ch. 5: Central Equatorial Pacific (Chl-a 
and primary production, sea bird abun-
dance, reef fish abundance)

Ch. 18: Southern Africa (Crop Yields)

Ecosystem 

Function

Ch. 5: Observations of reef fish from NOAA Pacific Reef Assessment and Monitoring Program surveys; visual  
observations of seabirds from USFWS surveys. 

Ch. 18: Empirical yield/rainfall model

El Niño Ch. 18: Southern Africa Ch. 4: Equatorial Pacific (Amplitude)                    El Niño

Ch. 4: SST observations; SGS and GEV distributions; modeling with LIM and CGCMs (NCAR CESM-LE and 
GFDL FLOR-FA) 

Ch. 18: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SSTs, CMIP5 multimodel coupled model assessment

total 18 3 9 30
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Table 1.1. SUMMARY of RESULTS
ANTHROPOGENIC INFLUENCE ON EVENT METHOD USED

Total 
Events

INCREASE DECREASE NOT FOUND OR UNCERTAIN

Heat

Ch. 3: Global

Ch. 7: Arctic

Ch. 15: France

Ch. 19: Asia 

Heat

Ch. 3: CMIP5 multimodel coupled model assessment with piCont, historicalNat, and historical forcings

Ch. 7: CMIP5 multimodel coupled model assessment with piCont, historicalNat, and historical forcings

Ch. 15: Flow analogues conditional on circulation types

Ch. 19: MIROC-AGCM atmosphere only model conditioned on SST patterns

Cold
Ch. 23: China

Ch. 24: China
Cold

Ch. 23: HadGEM3-A (GA6) atmosphere only model conditioned on SST and SIC for 2016 and data fitted to 
GEV distribution

Ch. 24: CMIP5 multimodel coupled model assessment

Heat & 
Dryness Ch. 25: Thailand Heat & Dryness Ch. 25: HadGEM3-A N216 Atmosphere only model conditioned on SST patterns

Marine Heat

Ch. 4: Central Equatorial Pacific

Ch. 5: Central Equatorial Pacific

Ch. 6: Pacific Northwest

Ch. 8: North Pacific Ocean/Alaska

Ch. 9: North Pacific Ocean/Alaska

Ch. 9: Australia

Ch. 4: Eastern Equatorial Pacific Marine Heat

Ch. 4: SST observations; SGS and GEV distributions; modeling with LIM and CGCMs (NCAR CESM-LE and 
GFDL FLOR-FA) 

Ch. 5: Observational extrapolation (OISST, HadISST, ERSST v4)

Ch. 6: Observational extrapolation; CMIP5 multimodel coupled model assessment

Ch. 8: Observational extrapolation; CMIP5 multimodel coupled model assessment

Ch. 9: Observational extrapolation; CMIP5 multimodel coupled model assessment

Heavy
Precipitation

Ch. 20: South China

Ch. 21: China (Wuhan)

Ch. 22: China (Yangtze River)

Ch. 10:  California (failed rains)

Ch. 26: Australia

Ch. 27: Australia

Heavy 
Precipitation

Ch. 10: CAM5 AMIP atmosphere only model conditioned on SST patterns and CESM1 CMIP single coupled 
model assessment

Ch. 20: Observational extrapolation; CMIP5 and CESM multimodel coupled model assessment; auto-regres-
sive models

Ch. 21: Observational extrapolation; HadGEM3-A atmosphere only model conditioned on SST patterns; 
CMIP5 multimodel coupled model assessment with ROF

Ch. 22: Observational extrapolation, CMIP5 multimodel coupled model assessment 

Ch. 26: BoM seasonal forecast attribution system and seasonal forecasts

Ch. 27: CMIP5 multimodel coupled model assessment

Frost Ch. 29: Australia Frost Ch. 29: weather@home multimodel atmosphere only models conditioned on SST patterns; BoM seasonal 
forecast attribution system

Winter Storm Ch. 11: Mid-Atlantic U.S. Storm "Jonas" Winter Storm Ch. 11: ECHAM5 atmosphere only model conditioned on SST patterns

Drought
Ch. 17: Southern Africa

Ch. 18: Southern Africa
Ch. 13: Brazil Drought

Ch. 13: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SST patterns; HadGEM3-A and CMIP5 multimodel coupled model assessent; hydrological modeling 

Ch. 17: Observational extrapolation; CMIP5 multimodel coupled model assessment; VIC land surface 
hdyrological model, optimal fingerprint method 

Ch. 18: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SSTs, CMIP5 multimodel coupled model assessment

Atmospheric
Circulation Ch. 15: Europe

Atmospheric

Circulation
Ch. 15: Flow analogues distances analysis conditioned on circulation types

Stagnant Air Ch. 14: Western Europe Stagnant Air Ch. 14: Observational extrapolation; Multimodel atmosphere only models conditioned on SST patterns 
including: HadGEM3-A model; EURO-CORDEX ensemble; EC-EARTH+RACMO ensemble

Wildfires Ch. 12: Canada & Australia (Vapor 
Pressure Deficits)

Wildfires Ch. 12: HadAM3 atmospere only model conditioned on SSTs and SIC for 2015/16

Coral 

Bleaching

Ch. 5:  Central Equatorial Pacific

Ch. 28: Great Barrier Reef
Coral 

Bleaching

Ch. 5: Observations from NOAA Pacific Reef Assessment and Monitoring Program surveys

Ch. 28: CMIP5 multimodel coupled model assessment; Observations of climatic and environmental conditions 
(NASA GES DISC, HadCRUT4, NOAA OISSTV2)

Ecosystem
Function

Ch. 5: Central Equatorial Pacific (Chl-a 
and primary production, sea bird abun-
dance, reef fish abundance)

Ch. 18: Southern Africa (Crop Yields)

Ecosystem 

Function

Ch. 5: Observations of reef fish from NOAA Pacific Reef Assessment and Monitoring Program surveys; visual 
observations of seabirds from USFWS surveys. 

Ch. 18: Empirical yield/rainfall model

El Niño Ch. 18: Southern Africa Ch. 4: Equatorial Pacific (Amplitude) El Niño

Ch. 4: SST observations; SGS and GEV distributions; modeling with LIM and CGCMs (NCAR CESM-LE and 
GFDL FLOR-FA) 

Ch. 18: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SSTs, CMIP5 multimodel coupled model assessment

total 18 3 9 30


